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Abstract~Two-dimensional equations are derived for high-frequency vibrations of linear elastic
shells. The derivation is based on the variational asymptotic analysis of the three-dimensional action
functional. This guarantees the exactness of the derived equations for the classical and thickness
branches of vibrations in the long-wave range. A best short-wave extrapolation is chosen so as
to reach the qualitative agreement with the three-dimensional theory in the short-wave range.
Comparisons are made with the similar results of the three-dimensional theory. © 1997 Elsevier
Science Ltd.

I. INTRODUCTION

The classical two-dimensional equations of motion of elastic plates and shells can be used
to describe their vibrations in the low-frequency long-wave range (Berdichevsky, 1979).
The exact solutions of the three dimensional equations of elasticity for infinite plates, by
Rayleigh (1889) and Lamb (1917), confirm this conclusion, A similar situation exists with
regard to the classical one-dimensional equations of motion of elastic rods (Pochhammer,
1876). Numerical analysis of Rayleigh-Lamb's and Pochhammer's dispersion equations
(Qnoe, 1955; Tolstoy and Usdin, 1957) shows that, as the frequency increases, many new
branches of the dispersion curves arise. These branches are connected to each other in the
complex wave-number plane, signifying the complicated interaction between waves of
different branches near the free edge of the plate or rod. As the wave number and the
frequency increase, the velocities in the three-dimensional theory have upper limits for all
branches, in contrast to the classical two-dimensional theory. Hence, the latter cannot be
expected to give good results for the frequencies of modes of vibration of high order.

Timoshenko (1921) was the first who included the effect of transverse shear defor­
mation to derive a one-dimensional theory of flexural motions of bars which gives more
satisfactory results for short waves and high modes of vibrations. But Timoshenko's theory
and its generalization for plates and shells (Reissner, 1947, statics only; Berdichevsky,
1979) have the shortcoming that they cannot describe satisfactorily the cut-off frequency
(corresponding to the zero wave number) and the long-wave asymptotes of the first branch
of thickness vibrations.

It was Mindlin (1951) and Mindlin and Medick (1959), who succeeded in deriving
two-dimensional equations of motions of plates which gives satisfactory results for dis­
persion curves of both low-frequency and thickness branches. In their pioneering papers
the following method of derivation has been proposed. The displacements are expressed by
the expansions in the series of Legendre polynomials of the thickness coordinate. These
series expressions are then substituted into the three-dimensional action functional followed
by an integration over the thickness and a truncation to produce a required order of
approximation. Since Legendre polynomials are not appropriate eigenfunctions of the
branches of thickness vibrations, the obtained two-dimensional theory cannot describe cut­
off frequencies and long-wave asymptotes of those branches. The "correction coefficients"
are introduced to improve the match between the frequency spectra of an infinite plate as
obtained from the approximate and exact equations.
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Although Mindlin's and Mindlin-Medick's theories have been successfully applied for
many engineering problems (see Mindlin, the Collected Papers, and quotations therein),
their introduction of the "correction coefficients" remains a little bit mystic. Berdichevsky
(1977) was the first who showed that the long-wave asymptotic analysis can be applied for
branches of high-frequency thickness vibrations ofelastic plates near the cut-off frequencies.
Based on the variational asymptotic method (Berdichevsky, 1979, 1983) he found the
distributions of the displacements and derived the equations of high frequency long-wave
vibrations for all thickness branches. This method is then applied for elastic rods (Kva­
shnina, 1979), elastic shells (Berdichevsky and Le, 1980), and piezoelectric plates (Le, 1984).
The later checking, by Kaplunov (1990), confirm the results for plates, but display some
arithmetic mistakes in our calculations of coefficients for the equations of shells, the
corrections of which lead to the full agreement of the results.

The equations derived in Berdichevsky and Le (1980) are asymptotically exact and
describe correctly the behavior of shells in the long-wave range near the cut-off frequencies.
However, these same equations without modification yields an unsatisfactory description
of the dispersion curves and the group velocities in the short-wave range. At the same
time, the formulation of boundary-value problems is associated with the behavior of the
differential operator at short wavelength. Thus, even asymptotic exact equations in the
long-wave range may lead to the ill-posed boundary value problems (Berdichevsky, 1979).
Therefore the construction of the theory of shells involves not only the derivation of
equations in the long-wave range, but also another logically independent step-the extra­
polation of those equations to short waves.

It is possible to carry out either trivial extrapolations, when the system of equations
derived for long waves is applied for short waves without any changes, or nontrivial
extrapolations, when terms that are small in the long-wave range but appreciable for short
waves are introduced (removed). We clarify this by a simple example. Let us consider the
following one-dimensional equations

(1)

(2)

Here c is a constant having the dimension of velocity, h is a small parameter having the
dimension of length. In the long-wave range these equations are indistinguishable in the
first approximation, for the term c2h2 iJ;u for long waves is small compared with the term
c2 iJ;u. In the short-wave range, however, eqns (I) and (2) differ essentially. Equation (I) is
a hyperbolic equation of second order requiring two boundary conditions. In eqn (2), for
short waves, the term c2 iJ;u, which is small compared with c2 iJ;u, can be neglected, so that
(2) is analogous to the equation for the transverse vibrations of a beam and requires the
formulation of four boundary conditions. Equations (1) and (2) can therefore be regarded
as the two different short-wave extrapolations describing the same physical situation in the
long-wave range.

For shells in the short-wave range it is impossible to describe the three dimensional
stress state exactly by the two-dimensional theory, and only a qualitative agreement can at
best be expected. For this reason, different two-dimensional equations are allowed in the
theory of shells. However, it is natural to demand asymptotic equivalence in the long-wave
range of the different short-wave extrapolations.

In our paper (Berdichevsky and Le, 1982) the best hyperbolic short-wave extrapolation
is proposed for the equations derived in Berdichevsky and Le (1980). This involves the
classical branches and several thickness branches of vibrations and takes into account their
cross-terms at short waves. The structure of the equations is similar to those of Mindlin
and Mindlin and Medick for plates, but in contrast to their theories, the asymptotic
accuracy is achieved in the long-wave range by the asymptotic analysis and not by an
introduction of "correction coefficient" based on an ad hoc assumption. This result is then
generalized for piezoelectric shells (Le, 1985, 1986), and elastic rods (Le, 1986).
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In this paper we present the full derivation of the two-dimensional theory of high­
frequency vibration of the elastic shells. We regard this theory as the shell theory with
internal degrees of freedom, which is specified by the two-dimensional kinetic and internal
energy densities. We then apply this theory to study wave propagation in an infinite
cylindrical shell. We compare the dispersion curves according to the two- and three­
dimensional theory (Gazis, 1959) and show the asymptotical exactness of the former in the
long-wave range. Based on the two-dimensional theory, an edge mode of vibration is found
for the semi-infinite cylindrical shells. The physical explanation of the existence of this
mode is given.

2. DISPLACEMENT NEAR THE CUT-OFF FREQUENCIES

The long-wave state in shells is defined as the state whose smallest wavelength I of the
deformation pattern in the longitudinal directions is considerably greater than the shell
thickness h. The possible types of long-wave vibrations can be classified roughly as follows.
Let the face surfaces of the shell be traction-free. Since I» h, the derivatives of the dis­
placements with respect to the longitudinal coordinates ~o (ex = 1,2) can be neglected in the
Lame equations and in the stress free boundary conditions as small compared with the
derivatives with respect to the transverse coordinates ~ E( -hI2, hI2). Then the Lame equa­
tions decompose into a system of three independent equations

(3)

(4)

Here W o and ware projections of the displacements on the longitudinal and transverse
coordinates, Aand fl are Lame's constants of the isotropic elastic material of the shell, and
p the mass density. Small Greek indices correspond to projections on the longitudinal
coordinates and range over 1, 2. The dot over quantities denotes their time derivative. The
complete set of particular solutions of (3) and (4) follows

w=v.j2cosex(, wo=O, ex = 2nn, (F~(n)),

w = 0, Wo = l/Jo.j2sinPC P= n(2n+ 1), (F11(n)),

w=l/J.j2sinexC w,=O, ex=n(2n+l), (L~(n)),

w=o, w,=vo.j2cospc (LI(n)),

(5)

(6)

(7)

(8)

with ( = ~/h. The quantities ex and Prun through a countable set of values, however, no
indices are attached to ex and Pin order to avoid complicated notations. The factor .j2 is
chosen so as to simplify the two-dimensional kinetic energy. It is understood that the
functions v, l/J" l/J, and v, correspond to each value of ex or P; these functions are also
not numbered. Furthermore, they depend harmonically on t with frequency w which is
determined by the appropriate values of ex or Pfrom the formulae

exCI
W=-

h

PCz
or w=h' (9)

Here Cj and Cz are the velocities of dilatational and shear waves, respectively. The notation
for series of different solutions is indicated in parentheses in (5)-(8).
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For functions, v, ljJ~, ljJ, v~ independent of ~", each of the solutions given above
represents an exact solution of the Lame equations for an infinite plate and corresponds to
synchronized vibrations of transverse fibers along the plate (with the zero longitudinal wave
number). The frequencies (9) will be called cut-off frequencies. For vibrations whose
amplitude and frequency vary slowly in the longitudinal directions of the plates and shells,
the equations (3)-(4) can be regarded as the zero approximations. The solutions (5)-(8)
can be considered as the principal terms in a certain asymptotic expansion in which v, ljJa,
ljJ, Va are functions of ~a and t, where

(10)

The values of W in these estimates are taken for the same branch as the corresponding
function, with the exception of F-L(O) and LI1(0), for which it is assumed that v~ cIvil,
vel. "-' c2vjl, where I is the smallest wavelength of the deformation pattern. The branches
F-L(O) and L1!(0) correspond to the low frequency vibration when whlc\ « 1. The inde­
pendence of the displacement at these branches from ~ in the zero approximation is a part
of the Kirchhoff-Love hypothesis (Kirchhoff, 1850, Love, 1927). All the remaining branches
correspond to vibrations with frequency w ~ cdh. The propagation time for a perturbation
over the thickness is of the same order as the period of vibration, and it is impossible to
suppose the displacements polynomials in ~ even in a zero approximation. Since w -> 00 as
h -> 0, the corresponding vibrations are naturally called high-frequency (or thickness)
vibrations.

Taking for example n = 1, C2 = 2500 mls (e.g., steel), h = 3 mm, we have WI c::::: 4'105

Hz for the branch FI(O), i.e., WI is in the ultrasonic domain. Vibrations of elastic bodies at
such a frequency can be important in problems of impact or in problems of vibrations
caused by an electromagnetic field (Mason, 1950, Shaw, 1956). Let us note that for layered
shells of sandwich type with a significant drop in the elastic moduli, WI is considerably
smaller and can even be in the audio frequency domain (Ryazantseva, 1985). The branches
have the displacement distributions which oscillate all the more rapidly over ~ as n grows.
The distribution of the branch n has 2n or 2n + 1 zeros. Note that the wavelength of the
high-frequency branches in the transverse direction of the three-dimensional shell is smaller
than h, but this fact is not an obstacle for the application of the asymptotic analysis, which
is based on the smallness of hll, with I the wavelength in the longitudinal direction.

To formulate the problem of free vibration of the shell we refer its unreformed state
to the curvilinear coordinates ~", ~

Here, Xi are Cartesian coordinates, ri(~a) is the position vector of the middle surface n,
nl(~') is the normal to n. Latin indices correspond to projections on Xi and range over 1,2,
3. In the coordinate system ~", ~ the covariant and contravariant components of the metric
tensors are given by the formulas

gap = a,p-2baP~+caP~2, ga3 = 0, 933 = 1,

1
9aP = --:;- [(1- 2H~)aaP+ 2~(1- 2HObaP + ~2C"P]

K"

(
h

3

)= aali +2b'P ~ +3cali ~2 + 0 R 3 '

(11)

Here a,p, baP' c,p are the first, second and third quadratic forms of the middle surface n,
respectively, K = 1-2H~+K~2, Hand K are the mean and Gaussian curvatures of n, R is
the smallest radius of curvature of n. We express the components of the strain tensor in
the following form
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(12)

Here w. = wir~, W = w,n i are the projections of the displacement vector Wi on the tangent
vectors r~ = r~. and the normal ni

, the comma in the subscripts denotes partial differentiation
with respect to ~', the semicolon denotes covariant differentiation on the surface n, and the
parentheses in the subscripts denote the symmetrization operation.

According to Hamilton's principle the displacements corresponding to the free
vibrations of the shell are extremals of the action functional (see, e.g., Berdichevsky, 1983)

with L the Lagrangian given by

f'21 fhl21= . LKd~dadt,
II n -h/2

(13)

(14)

and da the area element on n.
Let us apply the variational-asymptotic method to the variational problem of finding

the extremals of the functional (13). We assume the smallness of the parameters h* = hlR
and h** = hll everywhere in n. Making the substitution ( = ~/h and discarding formally
all small terms in (13) we arrive at the zero approximation functional

(15)

The Euler equations of this functional yield four series of free vibrations (5)-(8). It is
convenient to introduce further in the series F.l and L.l the number f3 according to

;;;-~
rJ. = ef3, e = {i+2/t =V~· (16)

Similarly, we also introduce in the series F II and L
II
the number rJ. by the same formula (16).

Now we find the next refinement for the displacements of branches of the series F.l'
Considering v belonging to the branch F.l(n) a given function of~' and t, we seek w. for
that branch. Keeping the principal terms depending on w. and the principal cross terms in
(13), we obtain the functional

with

f'21 fl/211 = h . L 1 d(dadt,
'I Q - 1/2

(17)
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Integration by parts was performed and terms that go to the boundary and does not affect
the equations inside n were neglected in (17). Let us find the extremal of this functional.
After taking the variation of (17) relative to w. we obtain the equations

2 A+J.l h .
w"" + /3 w. = -J.l- hIXV,• ...; 2 sm IX~, I~I ~ 1/2, W,. +hv,.j2coslX( = 0, (= ± 1/2,

(18)

They yield the following tangential displacements

h h(' 2(-I)"esin(/30)
w.=v,.~...;2 smIX(- cos(/3/2) . (19)

As expected, the tangential displacements turn out to be much smaller than the normal
displacement in the long-wave range and are of the order h**u,

Let us seek the correction to w

w = v cos IX( +w',

Here w. is considered fixed and defined by (19). Without limiting the generality, the
following constraint can be imposed on w'

f
l 12

W' cos IX( d( = O.
-1/2

It corresponds to the assumption that u = <wj2cos IXC), where <.> denotes the integration
over ( from -1/2 to 1/2. After discarding small terms containing w' and small cross terms
as compared with the rest, the functional (13) takes the form (17) with a Lagrangian given
by the formula

Its extremal has the form

1-4e2

w' = Hhvj2«(coslX(+ --sinIXO.
IX

Summing up, we have the following distribution of the displacements over the thickness in
the series F.l (within the first approximation)



High frequency vibrations in elastic shells

h r;;.(. 2( - 1Ye Sin(PO)
w, = v" ~Y 2 sm etC - cos(P/2) .
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(21)

Analogously, formulae are obtained for the displacements in the three remaining series

F 11 : W a = 1/I,J2 sin PC+hJ2(HI/I,CsinPC+ i I/Ip cos PC}

h r;;.( 2( -lyeCOS(etO)
W = I/I~, pY 2 cos PC - sin(et/2) ,

h r;;.( 2( -1 )"e cos(PO)
w, = 1/1" ~Y 2 -cos et' + sin(p/2) ,

,h r;;.(. 2(-1)"eSin(etO)
W = V;'Py 2 -smpC+ cos(et/2) ,

(22)

(23)

(24)

where b~ = b~ + Hb~. The distinguishing feature of shells as compared with plates is that
the correction terms in the displacements are of the order h* compared to the principal
term, while they are of the order h2 ** in plates. By continuing the iteration process, the
next corrections to wand w, can be found. They are not presented here since they yield no
contribution to the average Lagrangian of the first approximation.

3. THICKNESS VIBRATIONS IN THE LONG-WAVE RANGE

Let the displacements w, w, be expressed by the infinite series of branches given above,
where U, 1/1" 1/1, u, are arbitrary functions of~' and t. After substituting these series into the
action functional (13) and integrating over the thickness we neglect those small terms of
order h*, h** compared with 1. It turns out that the thickness branches are orthogonal
relative to the energy functional in the long-wave range (Berdichevsky, 1977, Berdichevsky
and Le, 1980). Therefore the average functional has the form

1= hf'2 ( Lctadt,
t 1 In (25)

where the average Lagrangian L decomposes into a series of average Lagrangians of low
frequency and thickness branches.t For the series F.L we get

tThe average Lagrangian of the low frequency branches can be found in Berdichevsky, 1979.
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Fl-: 2£=Pi;2+PI2(~J a~{JiJ,~iJ,{J+PI4(~JiJ2

- (A+ 2J.l) ( (*Jv
2+II rx~{Jv,~v,{J + l)v2).

(
2e2 tan(f3/2) 5- 3e2 2e2 )

II =2 1- +---
f3/2 l-e2 cos 2 (f3/2)'

3 - e24e2tan(f3/2) 4e2
12 = 1--- + ,

1- e2 f3/2 cos2 (f3/2)

(26)

Within the first approximation one can further simplify this expression. Indeed, at the cut­
up frequencies eqns (9) and (10) are valid so that one can replace the term
pI2(h/rx)2a~{JiJ,~iJ,{J by pI2cia~{Jv,~v,{J and the term pI4(h/rx)2iJ2 by pl4Civ2. Now the average
Lagrangians for the series Fl- become

Fl- : 2£ = piJ2 - J.l[(h- 2f32 +k2)V2+k 1a~{Jv"v,{J],

k _~_l6tan(f3/2)
I - e2 f3'

In the similar way we get

F
11

: 2£ = pa~{JtiJ~tiJ{J - J.l[(h~2 f32a~{J +k~{J)t/J,t/J (J + 2t/J(a;{J)t/J(~;{J) +k l (t/J~,)2],

16e2cot(rx/2)
k 1 = -1 + ,

rx

k~{J = (3H2- K)a~{J +6Hb~{J - 2Ka'{J,

Ll- : 2£ = ptiJ2 - J.l[(h- 2f32 +k 2)t/J2 +k l a,{Jt/J,~t/J,fJl,

k _ ~ 16cot(f3/2)
1 - e2 + f3 '

L II : 2£ = pa~{JiJ,iJ{J-J.l[(h~2f32a'P+k~{J)v,v{J+2v(~;{J)v(~;{J)+kl(V~~)2],

16e2tan(rx/2)
k 1 =-I- .

rx

(27)

(28)

(29)

(30)

The coefficients k2in the series Ll- and the tensors k~{J in the series L
li

are not written down
here since they agree in form with those in the series Fl- and LII,t Not only the principal
terms containing the factor 1 in the kinetic energy and the factor h- 2 in the internal energy,

t There were some arithmetic mistakes in our calculation of the coefficients of correction terms in Berdichevsky
and Le (1980),
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Fig. 1. Graph of k1 as the function of v.

but also terms of the next orders of smallness must be retained in the average Lagrangians
(27)-(30), due to the fact that, at the cut-up frequencies, the sum of the principal terms
turns out to be small.

By varying the action functional (25) with L from (27)-(30) we arrive at the following
equations of thickness vibration

(31 )

(32)

The equations for the series L'L and L II can be obtained from (31) and (32) by making the
respective substitutions: v ---+ t/J, t/J, ---+ Va' These equations coincide with those of Kaplunov
(1990) derived by the asymptotic method of Goldenveizer.

It is interesting to note that the type of the eqns (31 )-(32) depend on the coefficients
k j • For instance, eqn (31) is of the hyperbolic type if k 1 > O. Figure 1 shows the graphs of
k) as the functions of the Poisson ratio v for the branch L'L(O). One can see that for the
range 0 < v < 113 this coefficient is negative, and the equation of vibration is of the elliptic
type.

We shall see in the next section, how this "pathological" feature of the equations of
thickness vibration could be removed by extrapolating them to the short waves taking into
account the cross terms between branches.

4. HYPERBOLIC SHORT-WAVE EXTRAPOLATION

Let us consider vibrations of the shell that can be regarded with sufficient accuracy as
the superposition of the branches F'L(O), FII(O), L'I(O), L'L(O), L II (1). The branches F'L(O) and
LII(O) correspond to low-frequency vibrations, the other ones-to thickness vibrations with
the lowest frequencies. The dynamic equations contain eight unknown functions of the
longitudinal coordinates and the time: a, a", 1/1", 1/1, v" (the symbols without the bar are
reserved for the functions in the final equations). Despite the fact that the theory involves
more unknown functions than in the classical shell theory, it should be regarded as a first
approximation theory describing asymptotically exactly the vibrations of the shell in the
range oflong waves and high frequencies (w ~ 2nc2Ih).

Thus, we present the displacements of the shell in the form

w = a-h(JA:'+h2p~m(()+lfa(()+hv\g((),

lV, = aa-hniai.a'+h3P~;JP(O+h3P;aq(O

-pv _p -+ t/Jpea(~) +v,d,(O +ht/J." f(() (33)

with (J = icl(A+2p) = v/(1-v). The three first terms of the first equations of (33) and four
of the second one describe the low-frequency branches (Berdichevsky, 1979), with the
following surface strain measures



3932 Le Khanh Chau

(34)

The functions m(O, p(O, q(O, a(O, d~(O, e~(O,f(o, g(O are given by

1-4e2

a(O = J2sinn(+HhJ2(( cosn(- --cosnO,
n

bfJ
d~(O = J2b~ cos 2n( + hJ2(H(j~( cos 2n( - 2: sin 2n(),

bfJ
e~ (0 = c(j~ sin n( + hc(H (j~ ( sin n( + ~ sin nO,

n

J2 ( e 2eCOS(n(/e))
f(O = - - cos nl, + . ( 12) ,

n sm nl e

J2(. 2e Sin(2neo)
g(O = -2 -sm2n(- ()'n cos ne

(35)

with c at the moment an undefined constant that will be chosen later to simplify the
subsequent change of unknown functions. In (33) we neglect the correction term associated
with hl{J\. This is due to an additional analysis, which shows that a hyperbolic short-wave
extrapolation describing exactly the curvature of the dispersion curve near the cut-up
frequency of the branch F11(O) does not exist.

We substitute the formulae (33) into the action functional (13) and integrate over the
thickness. Discarding small terms in the asymptotic sense and using the results of the
previous section, after long but otherwise standard calculations one can show that

L=~p[a2+c; (~,)2_(ao)2+2clhao~;0+~2+2c2h~Ai

+2c h~fl +fP +2c h6 ~;oJ- ~J1[/32h-2l{J2 +/32h- 2iP +2d h- ll{JvA
3,/.040 22 302,!,

+ 2d3h- 1v'l{J,0 +2CT(.li) 2 +2.l'P.lab +k2l{J~ +k 3 (V\)2 +2V(0:P)V(':fJ)

h2 . _ _ C2 _

+ 6(CT(p;Y + pOP Pop) +2hd4 pll/J) +2hdsp'Pl/J(0:P) +h- 2/3T 2 l/J;

+ 2hd6 l{J°p1;0 + 2hd7l{J°p~:A + (c2/2)s~Pl{J,l{JP+SSl{J2 -SO!voVpJ
In this Lagrangian the coefficients are given by the following formulae

k 2 = ~ + 16e cot (2][)' k 3 = - 1- 8e tan(ne),
e2 n e n

(36)



High frequency vibrations in elastic shells 3933

16
r3 = - 3'

4c
d5 = d7 = 2'

n

5'xl = (3H2- K)aoP +6Hbop - 2Ka'P,

55 = -H2(1/e2-l6)+K(1/e2-8). (37)

It is interesting to note the identifies C1 = C2, C3 = C4, d2 = d3, d4 = d6 , d5 = d7 , which mean
that the cross-terms in (36) form divergence terms that do not affect the equations of
vibrations in the long-wave range.

In order to search for a short-wave extrapolation which does not contain second and
higher derivatives in the Lagrangian let us choose c = n2/24t and make the following
substitutions

i_ -1 ( - (J(24)2 _; 1(24)2 -A )
U = fl, t/J, = -n ui.,+h t/J'-"3 n3 Pj;'-"3 n3 P,;j.,

The sense of these changes of unknown functions is to make all terms containing second
and higher derivatives of the new functions negligibly small in the long-wave range. Dis­
carding them and extrapolating the result to short wave, we obtain the following average
Lagrangian.

+ 2r1 h- 1t/JAi +2r2h-1 t/Jv~ +2r3h- J v't/J.o

+f~P(t/Jo +niui,.)(t/JP+niui,p) +f2h- 2t/J2 +f~Ph-2voVp],

with

(39)

1
wop = 2(up,o - uo,p). (40)

The new coefficients in (39) are given by

t It is easy to show that the Lagrangian does not depend on this special choice.
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2y0.a 8a2

'1 =--2-' 51 =2a+~,
e e n

(41)

The Lagrangian £ is a quadratic form with respect to u" u, ljJ" ljJ, v, and their first
derivatives. Varying the action functional with L from (39), we obtain the equations

where

and

phil' = t~!-qPb'p,

phii = q~, + t'Pb,p,

pexh3ljia = -q' -m~!,

phlji = flh(52,1.ljJ -'1h- 1Al- '23h-1 vl-f2 h- 2ljJ),

phD, = flh((53+1)v).,+,1.V'+'23h-lljJ.,-f~,h-2vp),

n'P = flh(5 1 Ala'P + 2A'P +'1 h- 1ljJa'P),

h3

mOP = fl(;(apla'P +pOP), q' = flhf~P(ljJP+ u,P +b~u!J,

(42)

(43)

It is easy to show that when 52 > 0 and 53 + 1 > 0 then the internal energy (the expression
in the square brackets of (39)) is positive definite and the Euler equations (42) are of the
hyperbolic type. Figure 2 depicts the graphs of 52 and 53 + 1 as functions of v in the interval
(0,0.44), which are positive over there.
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Fig. 2. Graphs of Sz and S3 + I as functions of v.
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Fig. 3. A cylindrical shell.
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5. WAVE PROPAGATION AND AN EDGE MODE IN CYLINDRICAL SHELLS

Let us consider a cylindrical coordinate system ~1, ~2, ~3, with ~l the axial, ~2 = R() the
circumferential, and ~3 the radial coordinate, respectively. An infinitely long cylindrical
shell (Fig. 3) occupies the region WI ~ nR, I~3 - RI ~ h/2. Its middle surface is specified by
~3 = R, which leads to the following first and second quadratic forms

We seek solutions of the wave equations (42) for the cylindrical shell in the form

(44)

where the unknowns WI> ... ,Ws do not depend on ~. and t; and YJ is determined by

YJR = n, n = 0,1,2, ...

Substituting (44) into (42) and eliminating the common factors, which is either COSYJ~2

exp[i(k~l-wt)] or sin YJ~2 exp[i(k~l_wt)], we arrive at the following eigenvalue problem

(45)

where H is an 8 x 8 matrix, whose elements are the (complex) functions of k. One can check
directly that for real k there are eight real eigenvalues of (45). In Fig. 4 graphs of the
dimensionless frequencies 8 = Wh/(nc2) vs the dimensionless wave numbers K = kh/(2n)
(dispesion curves) are shown. The parameters chosen for the numerical calculation are
equal to

v = 0.3, h/R = 1/30, n = 1.

To be able to compare with the analogous results from the three dimensional theory, we
show also the dispersion curves obtained numerically by Gazis (1958) (the dashed lines in
Fig. 4). One can see that both curves are almost identical in the long-wave range. Moreover,
even in the short-wave range there is a qualitatively good agreement between them. In Fig.
5 we present a detail of the lowest three modes near the origin, where the dispersion curves
according to the two- and three-dimensional theories are practically identical.
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Fig. 4. Dispersion curves for n = I, h/R = 1/30.
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Fig. 5. Detail of the three lowest branches for n = I, h/R = 1/30.

One of the most remarkable features of the thickness vibrations of semi-infinite shells,
plates and rods is the existence ofa so-called edge mode (Mindlin and Medick, 1959). Let
us consider the semi-infinite cylindrical shell bounded by a free edge at ¢l = 0 and assume
that

This corresponds to the case n = O. If, additionally, the ratio h/R is small, then the inter­
action between F- and L-branches can be considered as negligible and consequently the
equations for Ulo ljJ, VI and those for u, ljJl are uncoupled. Introducing the dimensionless co­
ordinate (I = ¢I/h and time r = te2/h, the former can be rewritten as follows

ljJl« = S2ljJ II I I -rlulll -r23 v lll -!2ljJ,

v II« = S3 VIIIl +r23ljJ1I -!3VI, (46)

where the vertical bar preceding indices denotes the partial derivative with respect to the
corresponding dimensionless coordinate, with the following coefficients
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Seeking the solution of (46) in the form

we reduce (46) to

- 2 -S2t/Jllll-rlalI1-r23vlIl +(9 -12)t/J = 0,

S3Vllll +r23lit ll +(92-13)VI = 0.
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(47)

The functions a b Ii; b VI can be expressed in terms of three potential function <l>i> i = 1, 2, 3
according to

a = <1>111 +<1>211 +<1>311'

litl = a\<I>1 +a2<1>2 +a3<1>3'

V1 = bl<l>lll +b2<1>211 +b3<1>31l'

It is easy to show that a b Ii; b VI are the solution of (46) if and only if

where Kl are the three roots of the dispersion equation

(48)

(49)

(SI K2- 92)(S2K2 - 92+ 12)(S3K2 - 92+13) - (S3K2 - 92+ 13)rTK2- (SI K2- 92)rLK2 = 0,

(50)

and where

ai = (SI Kl- 92 )/r],

bi = r23a;/(S3Kl- 92 +13)'

Let us consider the interval of frequencies, in which only one real root Ki of the cubic
equation (50) exists. The other two roots K~,3 are complex conjugate to each other. We
present the solution of (49) in the form

(51)

Because the solution should remain bounded as C -+ 00, K2 and K3 should be taken in the
lower halfof the complex plane. Substituting (48) and (51) into the free boundary conditions

slalll +rllit = 0,

S2lit l l +r3 6 = 0,

S3vlII +r2lit = 0, (52)
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at (I = 0, we obtain the system of three linear equations with respect to Ai. In Fig. 6 graphs
of Re(A[) and Im(A[) as functions of 9 are shown (Poisson's ratio v is equal to 0.31). At
9 ~ 4.56 we have Re(A[) = 1 and Im(A]) = O. This corresponds to the frequency of the
edge mode. In Fig. 7 one can see the graph of IA21 as a function of 9. At this frequency IA21

reaches it maximum.

6. CONCLUDING REMARKS

In this paper the following results are obtained:

1. The improved 20 equations of high frequency vibrations of elastic shells are derived by
using the variational-asymptotic method, which guarantees their accuracy in the long­
wave range.

2. The improved hyperbolic short-wave extrapolation of the 20 equations of high fre­
quency vibrations in the range of frequencies 0 ~ w ~ 2nc2/h is provided. The derived
equations are asymptotically exact in the long-wave range and have a qualitatively good
agreement with the 3D theory in the short-wave range.

3. The dispersion curves according to the derived 20 equations ofhigh frequency vibrations
are calculated numerically for infinitely long cylindrical shells. Comparison of 20 and
30 dispersion curves confirms the accuracy of the 20 equations. The edge mode in the
semi-infinite cylindrical shell is studied in detail, the explanation of its existence is
provided.
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this paper.
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